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Critical Behavior of Liquid 3He

G. H. Bordbar,1,2,3 S. M. Zebarjad,1,2 and F. Shojaei1,2

We investigate the liquid–gas second-order phase transition in liquid 3He using the
variational calculations based on the cluster expansion of the energy functional. We
also compute the critical point exponents of liquid 3He that are in agreement with
experimental data.
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1. INTRODUCTION

The liquids 3He and 4He are the only quantum liquids which exist naturally.
The word “quantum liquid” comes from the fact that for these systems, the in-
teratomic distance is at the order of their De Broglie wavelenght. 3He is a liquid
of strongly interacting fermionic atoms which behaves quite differently than the
normal liquids at low temperature (Wilks, 1970; Kent, 1993). The properties of
liquid 3He have been studied using different many-body techniques (Clark and
Westhaus, 1966; Nafari and Doroudi, 1995; Luijen and Meyer, 2000; Kindermann
and Wetterich, 2001; Takano and Yamada, 1994; Viviani et al., 1988; Pricaupenko
and Treiner, 1995; Fantoni et al., 1982; Krotscheck and Smith, 1983; Friman and
Krotscheck, 1982). Recently, the behavior of liquid 3He near its critical point
has been investigated using path-integral molecular dynamics and quantum virial
expansion (Müer and Luijten, 2002).

One of the most powerful techniques in many-body calculations is the vari-
ational method which is based on the cluster expansion of the energy functional
(lowest order constrained variational method) (Owen et al., 1977; Bordbar and
Modarres, 1997, 1998; Modarres and Bordbar, 1998; Bordbar and Riazi, 2001,
2002; Bordbar, 2002a,b, 2003, 2004; Bordbar and Hashemi, 2002). This is a
fully self-consistent method and does not introduce any free parameter to the
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calculations. The crucial point in this method is the functional minimization with
respect to the two-body correlation function subjected to the normalization con-
straint which finally leads to a Euler–Lagrange differential equation. The conver-
gence of its results has been shown by computing the three-body cluster energy
term (Bordbar and Modarres, 1997).

The liquid–gas phase transition near the critical point (second-order phase
transition) is an interesting subject in statistical mechanics. This behavior, critical
phenomena, is caused by the existence of singularity in thermodynamic functions
of the system at the transition point. The nature of these singularities in various
measurable quantities at the critical point is described by the critical exponents.

In our previous paper, we have calculated some thermodynamic properties of
liquid 3He using the variational method, which shows a good agreement between
experimental data and calculated results, especially for free energy and entropy
(Bordbar and Hashemi, 2002). In this paper, we present the critical behavior of
the liquid 3He. We organize the paper as follows: In section 2, we obtain the
critical properties of liquid 3He by calculating the critical isotherm. We investigate
the critical behavior of liquid 3He by computing the critical point exponents in
section 3.

2. CRITICAL ISOTHERMAL EQUATION OF STATE

The equation of state is the key point for investigating the second-order phase
transition in a hydrostatic system. The isothermal equation of state can be calcu-
lated from the Helmholtz free energy, F :

P = ρ2 ∂ F

∂ρ

∣∣∣∣
T

, (1)

where P , T and ρ = N
V are the pressure, temperature and number density, respec-

tively. N and V are the total number of particles and volume. To obtain the free
energy of liquid 3He, we use the variational method explained in the appendix.
The result for the equation of state at the critical temperature (critical isotherm) is
shown in Fig. 1. As seen from the figure, at the critical point, the isotherm curve
shows an inflection point which satisfies:

∂ P

∂ρ

∣∣∣∣
Tc

= ∂2 P

∂ρ2

∣∣∣∣
Tc

= 0, (2)

where Tc is the critical temperature. The calculated critical temperature, density
(ρc) and pressure (Pc) of liquid 3He are presented in Table I. The experimental
results (Heller, 1967; Fisher, 1967; Pittman et al., 1979) are also given for com-
parison. We can see a good agreement between these results.
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Fig. 1. The critical equation of state for liquid 3He.

3. CRITICAL EXPONENTS

For a hydrostatic system, the two-phase coexistence conditions are

Pliquid = Pgas

µliquid = µgas,
(3)

where the µliquid and µgas are the chemical potential of liquid and gas phases,
respectively. As the temperature increases, the liquid density decreases and the
gas density increases. At the critical temperature these, densities become equal.
This behavior for 3He is shown in Fig. 2. The order parameter ρliquid − ρgas,
which is defined to investigate the critical behavior of this system, vanishes at
the critical point. However, other thermodynamic properties diverge at this point.
The critical point exponents are defined to study the asymptotic behavior of
singular thermodynamic functions near the critical point. For this purpose, the
following functions for the thermodynamic quantities are introduced (Garrod,
1995):

Table I. Critical point properties of liquid 3He

Tc(K ) ρc(A−3) Pc(K A−3)

Our results 4.36 0.0054 0.0139
Experimental results (Heller, 1967) 3.324 0.00834 0.00844
Experimental results (Pittman et al., 1979) 3.317 0.00827 0.00846
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Fig. 2. The liquid and gas densities versus temperature for 3He.

3.1. Order Parameter

We can define the exponent β for this parameter as follows:

ρliquid − ρgas ∼ (−ε)β ; ε −→ 0−, (4)

where

ε = T − Tc

Tc
. (5)

The critical exponent β characterizes the behavior of the order parameter and of
course, the earlier function is meaningful only below the critical point in the region
where the order parameter is not zero. To obtain β, we draw the order parameter
as a function of ε on the log-log scale in Fig. 3. The slope of this figure yields the
value of β = 0.56239 ± 0.01386.

3.2. Pressure

By defining the exponent δ, we can describe the critical isotherm

P − Pc ∼ (ρ − ρc)δ; ρ −→ ρc, (6)

where ε = 0 (T = Tc). In Fig. 4, P − Pc as a function of ρ − ρc is shown. The
value of δ obtained from this figure is 3.31032 ± 0.08192.
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Fig. 3. The order parameter versus ε on log–log scale for 3He.

3.3. Heat Capacity

The exponent α′ and α characterize the behavior of specific heat (CV ) be-
low and above the critical temperature, respectively, along the critical isochore

Fig. 4. The P − Pc versus ρ − ρc at critical temperature (Tc) for 3He.
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Fig. 5. Specific heat along the critical isochore as a function of
ε above (full curve) and below (dashed curve) critical temper-
ature for 3He.

(V = Vc)

CVc = (−ε)−α′; ε −→ 0−,

CVc = (ε)−α; ε −→ 0+. (7)

In Fig. 5, the specific heat along the critical isochore versus ε is shown. The values
α′ = 0.1018 ± 0.0001 and α = 0.10609 ± 0.0014 are extracted from Fig. 5.

3.4. Isothermal Compressibility

For describing the behavior of isothermal compressibility (K ) near the critical
point, the exponents γ and γ ′ are defined to be

K = (−ε)−γ ′; ∈ −→ 0−,

K = (ε)−γ ; ∈ −→ 0+, (8)

The calculated values of isothermal compressibility shown in Fig. 6 leads to γ =
1.05343 ± 0.01077 and γ ′ = 1.05343 ± 0.01077.

We have presented the whole critical exponents for the 3He in Table II. The
experimental results (Heller, 1967; Fisher, 1967; Pittman et al., 1979) are also given
for the comparison in Table II. There is a good agreement between our calculations
for the critical exponents and the experimental results. From Table II, it can be
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Fig. 6. Isothermal compressibility as a function of ε above (full
curve) and below (dashed curve) critical temperature for 3He.
KI is the ideal fermi gas compressibility at ρ = ρc and T = Tc.

seen that the Griffiths and Rushbrooke inequalities (Huang, 1987; Griffiths, 1965)
are satisfied by our results for the critical exponents of 3He,

α + 2β + γ ≥ 2

α + β(1 + δ) ≥ 2. (9)

4. SUMMARY AND CONCLUSION

The liquid–gas phase transition near the critical point is of special interest
in statistical mechanics. In this paper, we have computed the critical equation of
state for liquid 3He which led to critical density, temperature and pressure of this

Table II. Critical exponents for 3He

β δ α′ α γ γ ′

Our results 0.5624 3.3103 0.1018 0.1061 1.0534 1.0560
±0.0139 ±0.0819 ±0.0001 ±0.0014 ±0.0108 ±0.0093

Experimental results ∼0.361 ∼4.21 ∼0.105 ∼0.105 ∼1.17 ∼1.17
(Heller, 1967)

Experimental results 0.322 ± 0.002 — — — 1.19 ± 0.01 —
(Pittman et al., 1979)
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system. The critical exponents, β, δ, α and γ for this system are computed. The
calculated critical exponents satisfies the Griffiths and Rushbrooke inequalities.
A comparison between our results and experimental data is made, which shows a
good agreement between theoretical calculation and experimental results.

APPENDIX

In this section, we give a brief review to obtain the free energy of liquid
3He using the lowest order constrained variational method based on the cluster
expansion of the energy functional (Owen et al., 1977; Bordbar and Modarres,
1997, 1998; Modarres and Bordbar, 1998; Bordbar and Riazi, 2001, 2002; Bordbar,
2002a,b, 2003, 2004; Bordbar and Hashemi, 2002). In this method, we choose a
trial many-body wave-function as

� =
{ ∏

i< j

f (i j)

}
�, (10)

where f (i j) is the two-body correlation function and � the Slater determinant of
non-interacting particles wave-functions (plane waves). We then apply the cluster
expansion to the energy per particle (Clark, 1979) and keep one- and two-body
energy terms,4

E = 1

N

〈�|H |�〉
〈�|�〉 = E1 + E2, (11)

where

E1 =
∑

i

h2k2
i

2m
n(ki ), (12)

E2 = 1

2N

∑
i j

〈i j |w(12)|i j − j i〉. (13)

In the earlier equations, n(ki ) is the Fermi-Dirac distribution function and

w(12) = h2

m
(∇12 f (12))2 + f 2(12)V (12), (14)

where V (12) is the interatomic potential. In the thermodynamic limit, Eqs. (12)
and (13) read:

E1 = h2

2mρπ2

∫ ∞

0
n(k)k4 dk, (15)

4 It is shown that higher order energy terms are ignorable when we are dealing with short-range potential
(Bordbar and Modarres, 1997).
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E2 = 2πρh2

m

∫ ∞

0

[
f ′2(r ) + m

h2 f 2(r )V (r )

] [
1 − 1

2

(
γ (r )

ρ

)2
]

r2 dr, (16)

where ρ is the number density,

ρ = 1

π2

∫ ∞

0
n(k)k2 dk, (17)

γ (r ) = 1

π2

∫ ∞

0

sin kr

kr
n(k)k2 dk, (18)

and f ′(r ) = ∂ f (r )
∂r .

At this point, we minimize the energy functional with respect to the two-body
correlation function, f (r ), to obtain the following Euler–Lagrange differential
equation{

2m

h2 f (r )V (r ) + 2λ f (r )

} [
1 − 1

2

(
γ (r )

ρ

)2
]

− ∂

∂r

[
2 f ′(r )

[
1 − 1

2

(
γ (r )

ρ

)2
]]

= 0,

(19)
where λ is the Lagrange multiplier that imposed the normalization condition
〈�|�〉 = 1. By solving Eq. (19), using the numerical technique, the two-body
correlation function, f (r ) and therefore the energy of the system are obtained.
This finally leads to the free energy function of the system

F = E − TS, (20)

where T and S are the temperature and entropy per particle of the systems (Fetter
and Walecka, 1971).

To calculate the free energy of liquid 3He, we use the Aziz interatomic po-
tential (Aziz et al., 1979) in Eqs. (16) and (19)

V (r ) = ε

{
Ae−αr/rm −

[
C6

(rm

r

)6
+ C8

(rm

r

)8
+ C10

(rm

r

)10
]

f (r )

}
, (21)

where

f (r ) =




e−( Drm
r −1)2

;
r

rm
≤ D

1;
r

rm
> D,

(22)

and
ε

kB
= 10.8K , A = 0.5448504 × 106 (23)

α = 13.353384, rm = 2.9673A, (24)

C6 = 1.37732412, C8 = 0.4253785, (25)



1872 Bordbar, Zebarjad, and Shojaei

Fig. 7. The free energy of liquid 3He as a function
of number density at different temperatures.

C10 = 0.178100, D = 1.241314. (26)

The realistic Aziz Potential agrees with the He–He scattering experimental
data which satisfies the following criteria:

• It has a short-range repulsive part which is described by exponential form.
• It has also a long-range attractive tail which includes the multiple interac-

tions.

A realistic potential between helium atoms must have the criteria. Our results
for the free energy calculations of the liquid 3He are given in Fig. 7 (Bordbar and
Hashemi, 2002).
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